
Differentiated Chunk Scheduling for P2P Video-on-
Demand System

Ubaid Abbasi1, Gaétan Simo2 and Toufik Ahmed1

1CNRS LaBRI Lab. – University of Bordeaux, France {abbasi, tad}@labri.fr
2ENSEIRB MATMECA Bordeaux, France {simo@enseirb-matmeca.fr}

Abstract—The peer-to-peer (P2P) networks provides a data
distribution model that is attractive for Video on Demand
(VoD) as it allows to decrease the costs and increase the
scalability of video distribution. The two significant
challenges in P2P VoD streaming are scalability and video
quality. Both require efficient utilization of the resources in
P2P network. Inspired by this finding, the paper addresses
the problems of chunk scheduling and bandwidth allocation
in P2P VoD system to efficiently utilize the upload
bandwidth capacity of the peers. We first propose a queue
based chunk scheduling mechanism followed by a
bandwidth distribution algorithm for urgent downloading
and prefetching. Our proposed mechanism allows the
maximum utilization of upload bandwidth by distributing the
available upload bandwidth among different queues.
Experimental results show that differentiated queuing is
capable of achieving the optimal streaming rate.

Keywords: P2P Network, chunk scheduling, Bandwidth
allocation, Overlay Organization, Quality of Service (QoS).

I. INTRODUCTION

Streaming applications have recently attracted a large
number of users on the Internet. In 2008, the number of
video streams served increased 24.3% to 41.6 billion
even without counting the user generated videos [1].
With the fast deployment of high-speed residential
access, video traffic is expected to dominate the Internet
in near future. To meet the demand of explosively
growing multimedia applications, media streaming has
been a research topic attracting significant interests over
the past two decades. The ultimate goal of Internet
media streaming is to satisfy the application
requirements of as many end users as possible, with
sustainable server bandwidth costs. The traditional
client/server architecture advocates the use of large data
centres to maintain streaming to end users at a large
scale. The bandwidth cost on servers increases rapidly
as the user population increases, and may not be
manageable in corporation with limited resources.
IP multicast [2][3] and content delivery networks
(CDNs), attempted to tackle the problem by conserving
resources in the edge or core routers, or by load
balancing across a large number of edge servers.
However, the problem of scalability to a large user
population in media streaming systems is only mitigated
to a certain degree, not solved.
Over the last few years, Peer-to-Peer (P2P) networks
have emerged as a promising approach for distribution

of multimedia contents over a large scale network [4].
P2P networks propose a different architectural design
perspective. It offloads part of the bandwidth burden
from dedicated streaming servers hosted by the content
providers, and shifts them to end hosts themselves when
they serve content to each other. The P2P design
philosophy seeks to utilize peer’s upload bandwidth for
reducing server’s workload. However, the upload
bandwidth utilization might be suppressed by the so
called content bottleneck where a peer may not have
any content that can be uploaded to its neighbors even if
its link is idle. The content bottleneck causes more
severe problems in VoD system, due to free user’s
control (forward, resume, pause etc). To make things
worst peers are interested only in a small portion of
chunks and their priorities changes more frequently as
compared to live streaming. One way to resolve this
problem is to compromise user viewing quality. For
example, a lower video playback rate has lower peer
bandwidth utilization requirement. Allowing a longer
playback delay also allows a larger set of chunks to be
exchanged among peers. The other solution lies in
designing more efficient prefetching strategies and
chunk scheduling methods.
In this paper, we propose a differentiated chunk
scheduling mechanism that can achieve high peer
bandwidth utilization. Using queue-based signaling
between peers and the content source server, the amount
of workload assigned to a peer is proportional to its
available upload capacity, which leads to high
bandwidth utilization. In VoD system, the chunks closer
to the current playing position have more importance,
therefore a queuing model is designed for the
segregation of “urgent” and “prefetching” traffic in
VoD system. More specifically our paper provides
following three fold contributions.

I. We investigate the server’s side of peer, and

classified the content requests into separate queues.
We then proposed different scheduling policies for
these queues considering the importance of each
type of chunk.

II. We proposed a link sharing mechanism, to
prioritize the “urgent downloading” target. The
bandwidth sharing among the queues therefore
follows a logical pattern.

III. We evaluate the properties of our algorithms,
through real test bed.

II. RELATED WORKS

Several recent works proposed a centralized solution
that can fully utilize peer’s uploading bandwidth and
achieve the streaming rate upper bound [5]. The
centralized solution collects all peers upload capacity
information, and calculates the sub-stream rates sent
from the server to peers. In practice, available upload
capacity varies over time and peers join and leave the
system. The central coordinator needs to continuously
monitor peer’s upload capacity and re-compute the sub-
stream rate to individuals. This results in excessive
computation and overhead on a single server.
The earliest work looking at improving download time
is by Bernstein et al. [6] on adaptive server peer
selection based on server attributes and partial
downloads. The authors propose, using machine
learning techniques for clients, to adaptively select
among alternative servers in order to reduce the
download time. While smarter server selection at the
client side may result in faster downloads, many of the
available peers will probably be highly popular ones

that are overloaded, due to both low (constrained)
resource availability and a large number of queued
download requests.
There have been ongoing efforts intending to improve
resource utilization in P2P streaming systems. The
study in [7] shows the mesh-based scheme can better
utilize peer’s upload capacity than tree-based scheme,
due to the dynamic mapping of content to the delivery
paths. To improve the resource utilization in mesh-
based P2P streaming, authors in [8] propose a multi-
phase swarming scheme where the fresh content is
quickly injected to the entire system in the first phase,
and peers exchange available content in the second
phase.
Network coding is also applied to P2P live streaming. In
[9], authors perform a reality check by using network
coding for P2P live streaming however, neither
approach can fully utilize the resources and achieve the
maximum streaming rate. The authors in [10] give a
randomized distributed algorithm that can converge to
the maximum streaming rate. They also study the delay
that users must suffer in order to play the stream with a
small amount of missing data.
In [11] authors describe architectural design issues of a
real P2P VoD system. The author also points out the
departure misses which are the major cause of server
load. In another similar work [12], the author proposes
an aggressive replication policy to reduce departure
misses. A peer can proactively replicate popular chunks
to other peers no matter whether they need these chunks
or not. While this replication policy may reduce server
load, it also severely wastes precious peer upload
bandwidth.

In our previous work [14], we proposed a cooperative
prefetching technique. In this strategy, the requested
segments in VCR interactivities are prefetched into
session beforehand using the information collected
through gossips. The peers in the same session
exchange the information related to available segments.
The segments which are not available in the session are
fetched from other sessions. This technique reduces the
delay and improves the hit ratio.
There are several fundamental questions that are unclear
such as how to differentiate between different request
types, which chunks should be given priority and what
the limitations of scheduling are and its trade-offs. The
existing works didn’t provide a comprehensive study on
these crucial issues. In differentiated chunk scheduling,
we focus on maximizing the utilization of upload
bandwidth of peers. We attempt to provide an effective
scheduling mechanism for P2P VoD system that assigns
different priorities to different request types. On the
basis of these priorities video chunks are provided to
peers.
The remaining part of this paper is organized as follows.
The queuing model and scheduling algorithm of
distributed chunk scheduling are described in Section
III. The experiment results are reported in Section IV.
Finally, section V ends the paper with concluding
remarks and an insight on future work.

III. DISTRIBUTED CHUNK SCHEDULING

The ability to achieve higher streaming rate in P2P VoD
system is highly desirable. Higher streaming rate
provides better quality and perception of stream. It also
provides a cushion to absorb the bandwidth variations
caused by peer churn and network congestion. The key
to achieve high streaming rate is to better utilize the
peer’s upload bandwidth.
 In this section we propose a differentiated chunk
scheduling mechanism that can achieve maximum
upload bandwidth of peers in P2P networks. We discuss
the scheduling mechanism when peer is acting as a
content source or content provider (server side
scheduling). We assume a fully connected mesh
topology, in which peers sends pull request to obtain the
desired content from other peers or server. The
availability of upload capacity is conditional to the
queue status.
 The following sub-sections will explain in detail the
proposed differentiated chunk scheduling policy.

A. Server Side Scheduling

The queuing model is specifically designed for the case
of co-existence of “urgent downloading” and
“prefetching” requests on each peer. Prefetching has
been proposed as a technique for reducing the access
latency. In this technique, peers prefetch and store

various portions of the streaming media ahead of their
playing position.
Each peer in the overlay providing the content to other
peers is considered as content server in our case. We
used two different queues for two different types of
requests. Before sending a request for chunk, each peer
sets an identifier for making distinction between the two
types of content requests. On each peer (content server),
there is a classifier which checks the request-type and
sends it to appropriate queue. The urgent downloading
target requires higher priority because the requested
chunks are closer to the current position of playing
window. There is also a scheduler which determines the
order of packets to be transmitted from the queues.
Figure 1 shows the model of queue based chunk
scheduling. In this figure, the serving peer receives
different types of chunk requests. These requests are
classified into different queues according to their
identifier.

Figure 1: Queuing model in a particular Peer

We used two different types of scheduling policies for
each queue. For urgent downloading target, the chunks
whose deadline is near to expire have given priority.
Thus earliest deadline first (EDF) is adapted in this
case. This allows the timely availability of chunks to the
requesting peer. If a peer requests multiple chunks at
different time interval, the latest request will be served
while the earlier chunk request would be forwarded to
prefetching queue. Let two chunks are requested from a
same peer at time te and tc , where te is earlier time and
tc denotes the current time. If the difference between the
two time (te and tc) is greater than certain threshold, then
this situation suggests that peer has performed a seek
operation and now it’s playing position have been
changed. We define the time threshold equals to 10
seconds which is same as the length of window for
urgent downloading [13]. In this case, we give priority
to the chunk closer to current position, thus the latest
request (at time tc) has been fulfilled. This scheduling
scheme allows the peer to obtain the chunks nearer to
playback position.

On the other hand we used simple first come first serve
(FCFS) policy for prefetching queue. This type of
content doesn’t have a specific deadline. These content
are used to reduce the delay latency when a user
performs a seek operation. Therefore FCFS policy is
sufficient for this type of content.

B. Bandwidth Distribution

We design a scheduler to determine the order of packets
to be transmitted from the queues according to the
bandwidth ratio “br” for each type of traffic. The
bandwidth ratio “br” represents the amount of
bandwidth dedicated to urgent downloading and
prefetching.

Input:
 G = (V, E)
 Chunk request: ri,j for i, j ∈ V
 Time Interval : ti
 Upload Bandwidth: µi for i ∈ V
 Video Chunk : c
Output:
 Video Chunk Schedule;
Algorithm:
1. for each ri,j ∈ R
2. if (ReqType = Urgent) //Urgent download
3. Push ri,j to UrgentQueue
4. Update UrgentQueue (ri,j)
5. else
6. Push ri,j to PrefetchQueue
7. for each ti ∈ T
8. Calculate bandwidth ratio
9. for each ri,j ∈ UrgentQueue
10. Sort ri,j according to deadline
11. Push Cj,i to i
12. If (µi- br > 0)
13. for each ri,j ∈ PrefetchQueue
14. Sort ri,j according to FCFS
15. Push Cj,i to i

Figure 2: Algorithm for Queue and Bandwidth Distribution

Moreover, both classes can borrow bandwidth from
each other when one of the two types of traffic is non-
existent or under the limit. This br value is also used to
calculate the service rate for both types of traffic on that
particular peer with bri and µi- bri being respectively the
service rate for urgent downloading and prefetching for
peer i. µi is the total available bandwidth of peer i. In
order to calculate the value of br we monitor the first
queue (urgent downloading) in periodic interval. We
calculate the total size of data chunks requested and
their corresponding deadlines. Let CSi represents the
chunk size requested by peer i with deadline ti then,

Bandwidth ratio (bri) =
∑ ௌ
సబ
∑ ௧

 సబ

This value of br is used to distribute the upload capacity
of the peer among the two types of traffic. The urgent
downloading target has higher priority therefore bri is
the outgoing capacity of this link. The remaining
bandwidth µi- bri is assigned to the prefetching queue.
The peers upload bandwidth doesn’t remain constant
and fluctuates over time. The periodic calculation of the
bandwidth ratio allows to handle the dynamicity of the
network. The algorithm for differentiated chunk
scheduling is described in Figure 2.

C. Client Side Scheduling

We divide the client buffer window into two
different stages, according to play back time of
segments as shown in Figure 3. The client side structure
is similar to most P2P VoD implementations [13]. The
adjacent stage contains the segments which are more
closer to the current playing position of the window.
Thus the segments in this window are considered
extremely important and therfore given higher priority.
The prefetching stage contains the block with the latest
playback time. We utilize cooperative prefetching[14]
to prefetch the content from different peers. This
technique fetches the maximum unavailable segments
into session thus reducing the inter-session transfer
delay. The other segments to be prefetched are given
lower priority as a request identifier.

Figure 3: Sliding Window in VoD System

IV. PERFORMANCE EVALUATION
This section describes the performance evaluation of

differentiated queuing mechanism for different QoS
parameters using real test bed.

A. Experimental Setup
We examined the performance of differentiated

queue scheduling through experiments on a real
network. We implemented the prototype of our proposed
mechanism on a typical VoD system, with a tracker,
content source and different peers. The tracker provides
the initial list of sources (seeders) to a new arriving peer.
The new peer exchanges the necessary control
information to start receiving the content. All
connections between the peers are TCP connection. For

bandwidth distribution we used the data suggested in
[15]. Internet has the characteristic of rich diversity
[16][17] and that’s true in our case for end nodes (peers).
All the peers are operating in surplus mode having
enough bandwidth for urgent downloading and
prefetching.

We compare the performance of differentiated queue
scheduling with a single queue mechanism. The single
queue mechanism utilizes same queue for two types of
requests. Moreover the prefetching requests from the
peers are also randomly generated.
Performance Metrics: The performance evaluation is
carried for different QoS metrics that include:
bandwidth utilization, latency and video throughput.
These parameters have significant role in determining
the overall QoS for the VoD streaming applications.

B. Results and Discussion
The average latency for both mechanisms is given in
Figure 4. We measure the average arrival time of
packets for both mechanisms. The x-axis shows the
position of playing window in Megabits while y-axis
depicts the average latency. It is observed that
differentiated queue scheduling with cooperative
prefetching has greater delay initially. This is
understandable because our mechanism focus on
prefetching rare chunks into session and later on if any
peer need a certain chunk, it can prefetch from a peer in
same session, with small delay. The latency tends to
decrease as the video progresses due to the presence of
sufficient chunks for seek operations.

Figure 4: Comparison of Average Latency

Figure 5 shows the rate achieved by differentiated
queuing compared to optimal rate. We calculate the
optimal rate using formula given in [18]. The difference
never increases 8% of the optimal rate possible in the
system. The curve exhibits variation due to the various
mode of operation. When the system is working in
surplus mode (bandwidth required is less than
bandwidth available) the achievable rate decreases.
However when system is working in deficient mode,
maximum upload bandwidth is utilized and optimal rate
is achieved at some points.

Figure 5: Achieved rate Vs Optimal rate

V. CONCLUSION & FUTUR PERSPECTIVES

In this paper, we propose a simple differentiated
chunk scheduling mechanism that can achieve
maximum bandwidth utilization in P2P VoD system. To
study the effectiveness of the proposed mechanism, a
prototype is developed and is used to conduct
experiments over the real network. The results
demonstrate the optimality and the effectiveness of the
proposed chunk scheduling mechanism.
Future work can develop along several directions. As
the first attempt of applying differentiated queue
management to P2P VoD system, we used simple queue
distribution schemes. We will explore queue control
design space to further improve the performance of
chunk scheduling mechanism. Secondly, we did not
compare the performance of differentiated chunk
scheduling with other existing methods. Although we
are confident that the proposed scheduling mechanism
can outperform existing approaches due to its
optimality, simplicity, and flexibility, it will be an
interesting exercise to do the comparison with existing
solutions.

ACKNOWLEDGMENT
The research leading to these results has received

funding from the European Union's Seventh Framework
Programme (FP7/2007-2013) in the ENVISION project,
grant agreement 248565.

REFERENCES
[1] “Accustream iMedia Research Homepage,” 2009.

http://www.accustreamresearch.com
[2] Xing Jin, Cheng Kan-Leung, Chan S.-H. Gary, “Island

Multicast: Combining IP Multicast With Overlay Data
Distribution”, “IEEE transactions on multimedia ,
2009, vol. 11, no.5, pp. 1024-1036

[3] Xing Jin, Cheng Kan-Leung, Chan S.-H. Gary, “Scalable
island multicast for peer-to-peer streaming”, Hindawi
Publishing Corporation, Advances in Multimedia,
Volume 2007, Issue 1, ISSN:1687-5680.

[4] Mubashar Mushtaq, Toufik Ahmed, and Djamal-Eddine
Meddour “Adaptive Packet Video Streaming Over P2P
Networks” in ACM International Conference Proceeding
part of International Workshop on Peer to Peer

Information Management (P2PIM), Vol. 152, Article
N°59, Hong Kong, May 2006.

[5] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory
for p2p streaming systems,” in Proceedings of IEEE
INFOCOM, 2007.

[6] Bernstein, D. S., Feng, Z., Levine, B. N., Zilberstein, S.
2003. Adaptive peer selection. In Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems
(IPTPS) 2003.

[7] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or Multiple-
Tree: A Comparative Study of Live P2P Streaming
Approaches,” in Proceedings of IEEE INFOCOM, 2007.

[8] N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer
Receiver-drIven MEsh-based Streaming,” in Proceedings
of IEEE INFOCOM, 2007.

[9] M. Wang and B. Li, “Lava: A reality check of network
coding in peerto-peer live streaming,” in Proceedings of
IEEE INFOCOM, 2007.

[10] L. Massoulie, A. Twigg, C. Gkantsidis, and P.
Rodriguez, “Randomized decentralized broadcasting
algorithms,” in Proceedings of IEEE INFOCOM, 2007.

[11] Bin Cheng, Lex Stein, Hai Jin, and Zheng Zhang,
“Towards Cinematic Internet Video-on-Demand” in
Proceedings of Eurosys 2008.

[12] Bin Cheng, Lex Stein, Hai Jin, and Zheng Zhang, “A
framework for Lazy Replication in P2P VoD”, in
Proceeding of NOSSDAV 2008.

[13] Bin Cheng et al. “GridCast: Improving peer sharing for
P2P VoD”, in ACM Transactions on Multimedia
Computing, Communications, and Applications
(TOMCCAP). Volume 4 , Issue 4 (October 2008).

[14] Abbasi, U., Ahmed, T.: COOCHING: cooperative
prefetching strategy for P2P video-on-demand system.
In: Lecture Notes in Computer Science; Wired-Wireless
Multimedia Networks and Services Management, vol.
5842, pp. 195–200. Springer, Berlin (2009).

[15] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang,
“The feasibility of supporting large-scale live streaming
applications with dynamic application end-points,” in
Proceedings of ACM SIGCOMM, Portland, OR, USA,
Aug. 2004, pp. 107–120.

[16] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An
analysis of live streaming workloads on the internet,” in
Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement, New York, NY, USA,2004, pp.
41–54.

[17] E. Veloso, V. Almeida, W. M. Jr., A. Bestavros, and S.
Jin, “A hierarchical characterization of a live streaming
media workload,” IEEE/ACM Transactions on
Networking, vol. 14, pp. 133–146, Feb. 2006.

[18] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory
for p2p streaming systems,” in Proceedings of IEEE
INFOCOM, 2007.

