

COntent Mediator architecture for content-aware nETworks

COMET, the Decoupled Approach: Mediating between Content Producers and Consumers

Envision-Comet Workshop, London November 10th 2011

© COMET

David Flórez (dflorez@tid.es)

Content Access still requires users' previous knowledge of machines hosting it.

- Need of searching mediators
- Contents "trapped" in isolated communities

Network is unaware of the Contents

- Carried to their final destination by using best efforts strategies
- Little or no use of QoS capabilities,
 - Especially if content and user are located at different ISPs

Mediation Plane, offering an unified interface

- For Content Providers to made the network aware of the contents
 - Assigning a unique identifier for the content, regardless where it is located and how it will be transmitted
- For Users, in order to request the retrieval of those contents by using the unique identifier
- For the Network,
 - Location of the Contents
 - Routing Information
 - Servers' status (load, transport protocols)

Content Forwarding Plane

- Sets up the channel between the user and the server hosting the requested contents
- Best Path in terms of QoS end to end, according to
 - Server's status
 - Content Requirements
 - · Service Level subscribed by the user

- Content resolution and path setup are separate as in today's DNS-based Internet
- Allows graceful transition from today's host-centric Internet
- Content resolution is based on a global content directory system

- CME/SNME/RAE/CAFE will be located at each ISP
- CREs are "outside" the ISPs, hence the decoupled name.
 - A single CRE can manage several ISP
 - There will exist a hierarchy of CREs (DNS-like)
- There will be more than one CAFE per ISP
 - Located at the links with other ISPs
 - For controlling Content Clients and Content Servers
- There may be more than one SNME
 - Depending on the Content Servers' density.

- Server Awareness •
 - How the Content Server informs the SNME with their load status
- Route Awareness
 - How the RAE informs the CME about qualified available routes to hop from ISP to ISP till the intended destination
- Content Publication
 - How the Content Publisher makes contents available throughout Comet by publishing Content Records to CRE
- Content Consumption ۲
 - How a Content Client will retrieve a content mediated by Comet

- 1. Content Server assesses its load and sends the result to SNME, where it is stored
 - A number of load parameters will be taken into account
 - Typically, CPU Load, Memory Allocation, Free Bandwidth
 - Status is coded into a predefined set of basic states
 - High/Medium/Low
 - High, meaning this server should be avoided for retrieval

This is an continual offline process. it is not triggered by events in the CME

- 1. RAE obtains routing information about its domain (prefixes, CoS and provisioning parameters) from provisioning tools (outside COMET's scope)
- 2. RAEs exchange NLRI (Network Layer Reachability Records) with peering ISPs
 - Eventually each RAE located in an ISP learns how to reach another ISP
 - Routing information is expressed in terms of prefix and list of paths
 - Path information is qualified by means of:
 - list of AS identifiers to be traversed towards given prefix (ISPs)
 - supported COMET CoS
 - QoS parameters: Max Packet Delay, Max Packet Loss and max Bandwidth,
 - QoS routing and multipath discovery
 - The RAE discovers paths with respect to requirements of COMET CoS
 - The RAE allows for more than one valid path between AS
- 3. RAE feeds this routing information to CME, where it is stored.

Again, this is an continual offline process, which reacts on changes in network topology or domain re-provisioning. It does not require any CME's intervention

- 1. Content Publisher sends a registration query to CRE, where it is stored for further look up
 - The CRE is the one in charge of managing the domain the content is registered to
 - i.e., to register <u>com.gmail@John/mySong</u>, user John will register mySong in gmail.com CRE)
 - The result of this operation is a Content Record describing the content.
 - Two Identifiers are assigned to each content
 - One Human oriented (<u>com.gmail@John/mySong</u>), The Content Name
 - One Machine Oriented for internal use, The Content ID
 - A Content Record contains a list of Content Sources
 - Mime Type identifying the type of content
 - Comet CoS (Premium, Better than Best Effort, Best Effort)
 - Traffic Description (Bandwidth)
 - QoS Constraints (Packet Delay, Packet Loss)
 - Application and Transport Protocol
 - Priority of the Source
 - List of actual Servers, identified by
 - IP, Path, CME ID where they are located

Source 1: MIME Type: video/mp4 CoS: Better than Best Effort N° of traffic descriptors: 1 Traffic descriptor: 400 kbps N° of QoS constraints: 1 QoS constraints: Max Packet Loss 5% QoS constraints: Max delay 50ms Priority 5 Application protocol: RTSP Transport protocol and port: UDP 675 N° of servers: 1 • Server 1:	com.gmail@john_doe/birthday_2010	CID A78F901E98AA5674A
 IP address: 1.1.1.2 Path: /user/profiles/john_doe/birthday_2 CME ID: 1.1.1.1 Application protocol: HTTP Transport protocol and port: TCP 80 N° of servers: 8 Server 1: IP address: 1.2.3.4 Path: /events/2010/birthdays/john_d CME ID: 1.2.3.4 Server 2: IP address: 5.6.7.8 	Jource 1: MIME Type: video/mp4 CoS: Better than Best Effort N° of traffic descriptors: 1 Traffic descriptor: 400 kbps N° of QoS constraints: 1 QoS constraints: Max Packet Loss 5% QoS constraints: Max delay 50ms Priority 5 Application protocol: RTSP Transport protocol and port: UDP 675 N° of servers: 1 • Server 1: • IP address: 1.1.1.2 • Path: /user/profiles/john_doe/birthday_2 • CME ID: 1.1.1	Source 2: MIME Type video/mp4 CoS: Premium N° of traffic descriptors: 1 Traffic descriptor: 200 kbps N° of QoS constraints: 2 QoS constraints: Packet Loss 10% QoS constraints: Max delay 40 ms Priority 10 Application protocol: HTTP Transport protocol and port: TCP 80 N° of servers: 8 • Server 1: • IP address: 1.2.3.4 • Path: /events/2010/birthdays/john_doe/ • CME ID: 1.2.3.4 • Server 2: • IP address: 5.6.7.8

Important: <u>CREs are not directly related to ISPs (the decoupled trait)</u>

- An ISP does not need to own and manage a CRE
- A single CRE can manage CR for several ISPs
- A single CRE can be queried by CMEs in different ISPs.
- There will exist a hierarchy of CREs (DNS-like)
 - A CME can ask to higher levels' CREs (root) which CRE manages contents its "local" CRE is not aware of.

Content Request

1. CC sends a query to CME in order to consume a content (Content Name).

Name Resolution

- 2. CME sends a query to CRE to resolve the Content Name
 - Since CREs are "outside" the ISP, CME first has to find out which CRE can serve its query
 - Content Domain CRE, if this is already known.
 - Root CRE if CME is unaware of the CRE managing the queried domain, Root then redirects CME to the right CRE.
- 3. CRE looks up the queried content in its DB, retrieving the Content Record and send it back to the CME
- At this moment, CME has at its disposal a list of Content Sources for the Content grouped by
 - Class of Service
 - Priority
 - Mime Type
 - Transport and Application protocols.
 - Traffic and QoS constraints
 - Actual Servers providing the content

Path Discovery

- 4. CME retrieves from its internal Path Storage the path(s) to reach the ISP of each server included in Content Record
 - For paths not stored in Path Storage, CME at client's ISP sends a query to CME at server's ISP to retrieve this information.
 → Reverse Approach

Now, CME has at its disposal

- A list of paths to each remote Server, qualified with traffic/QoS parameters
 - Each path consists of a sequence of the AS id that have to be crossed to reach the final destination,
 - Traffic/QoS Parameters are typically
 - Provisioned Bandwidth of the Path
 - Packets Loss
 - Packet Delay
- The List of available Content Sources, as described above

Server Awareness

- 5. For each server in the Content Record, Client's CME queries remote CME at servers' ISP, in order to retrieve their load status
- 6. Each remote CME searches for the server status in local SNME.
- 7. Each remote CME forwards the status information of its servers to CME of client's ISP.
- At this point in time, Mediation Controller at the client's CME has gathered information about Content Sources, Qualified Paths to them and Servers' Status

Decision Process

- 8. The consolidated information is assessed by Decision Maker in the CME, which (hopefully) returns the best path option.
 - Path is still described as a list of AS Identifiers.
 - It has to be translated into a list of CAFE's identifiers
 - CAFEs in each ISP configured to forward packets from that ISP to the next in the list.

Path Configuration

- 9. Local CME at Client's ISP sent the path info to the remote CME at Server's CME
 - Path in AS form + Client's attached CAFE.
 - Remote CME adds the Server's attached CAFÉ
 - Finds the CAFE linking the remote ISP with the penultimate ISP in the list
 - Queries that ISP to resolve the list of remaining ISP after having deleting itself
 - An so on recursively
- 10. The translated Path is returned to the CME at Client's ISP
- 11. Each CME in both client's and server's ISP configures CAFEs involved in the path.
 - Only client's attached CAFE and server's
 - With the list of forwarding CAFEs to be traversed to reach the other end.

- 12. Finally, a tunnel is ready for content retrieval
 - Binding client's attached CAFE to server's
- 13. CME of client's ISP sends content connection parameters to CC
 - Mime Type
 - Application Protocol
 - Transport Protocol
 - Server IP and Port
- 14. The client downloads the content through the tunnel
 - When a packet is received at client's attached CAFE or at server's the list of CAFEs to be traversed is added to the packet
 - Subsequent CAFEs in the path know how to route the packet by looking the CAFEs' list up

COntent Mediator architecture for content-aware nETworks

Envision-Comet Workshop, London November 10th 2011

© COMET