
Bandwidth and memory sharing in CCN:
results from CONNECT

Jim Roberts, INRIA

COMET-ENVISION Workshop
Slough, 10-11 November 2011

CONNECT

•  a French national project (Jan 2011 – Dec 2012)
•  Alcatel, Orange, INRIA, Univ Paris VI, Telecom ParisTech
•  objective: consider content-centric networking, starting from

 the PARC design, adding missing pieces within our area of
 competence (traffic control, cache management,...)

•  5 work packages
–  traffic control and resource sharing
–  naming, routing and forwarding
–  caching strategies and bandwidth/memory tradeoffs
–  use cases and security
–  evaluation, experimentation

•  this talk relates work from 1st and 3rd work packages

CCN traffic control

•  traffic control by network mechanisms and forwarding strategies
–  to ensure low latency for real time applications
–  to control bandwidth sharing between elastic downloads
–  to enable a viable business model for the network provider

•  a need to separate buffer and cache
–  a huge cache of O(1012) bytes to significantly reduce traffic volume
–  a small buffer of O(106) bytes on each face for responsive traffic

 management

•  on arrival of a Data packet do the following in parallel
–  cache, if appropriate
–  place in buffer on relevant faces
–  discard, if necessary

Our choice: flow-aware CCN

•  identify flows by object name...
–  included in chunk name and parse-able

•  ... on-the-fly, locally, e.g., at a given face

user given name other... chunk number version

object name

chunk name

Our choice: flow-aware CCN

•  identify flows by object name...
–  included in chunk name and parse-able

•  ... on-the-fly, locally, e.g., at a given face
•  at each face apply per-flow fair queuing

–  to ensure low latency for real time applications
–  to control bandwidth sharing between elastic downloads

1 backlogged flow

multiple low rate flows
FQ

Our choice: flow-aware CCN

•  identify flows by object name...
–  included in chunk name and parse-able

•  ... on-the-fly, locally, e.g., at a given face
•  at each face apply per-flow fair queuing

–  to ensure low latency for real time applications
–  to control bandwidth sharing between elastic downloads

•  a provably scalable mechanism: O(100) active flows at load < 90%
–  under a realistic model of dynamic traffic
–  "active flows" have 1 or more packets in buffer
–  load = flow arrival rate × mean size / link rate

1 backlogged flow

multiple low rate flows
FQ

Our choice: flow-aware CCN

•  identify flows by object name...
–  included in chunk name and parse-able

•  ... on-the-fly, locally, e.g., at a given face
•  at each face apply per-flow fair queuing

–  to ensure low latency for real time applications
–  to control bandwidth sharing between elastic downloads

•  a provably scalable mechanism: O(100) active flows at load < 90%
–  under a realistic model of dynamic traffic
–  "active flows" have 1 or more packets in buffer
–  load = flow arrival rate × mean size / link rate

•  traffic engineering and overload control required to ensure
 load < 90%

Paying for transport

•  a proposed direction of charging: Interests "buy" Data
–  user pays provider A, A pays provider B,..., for delivered Data
–  not excluding flat rates, peering...

•  brings return on investment and incentive to invest
–  in transmission capacity (to be able to sell Data)
–  in cache memory to avoid paying repeatedly for popular content

•  no charge for Interests but an incentive to avoid buying Data
 that can't be delivered due to congestion...

•  ... by discarding excess Interests
–  using FQ scheduler status to determine excess

provider A provider B

source Y X Interests

Data $
$

user

Forwarding strategies

•  network performance is broadly independent of user strategies
 in emitting Interests
–  greedy strategies are OK (e.g., using source coding)
–  AIMD avoids unnecessary end-system complexity

•  multicast and multipath forwarding work OK with fair queuing
–  provided multicast streams are in cache
–  provided multipath intelligently avoids long paths

•  enhance CCN with explicit congestion notification: discard
 payload if necessary but return the header
–  limits PIT size in routers and end-systems

source Y X Interests

Data
user

Cache performance: re-visiting the literature

•  popularity distributions: Zipf (~1/iα), α<1 or α>1, other laws
•  replacement policies: LFU, LRU, LRU with filters, random,...
•  hit rate estimates: Flajolet, Jelenkovic, Gelenbe, Che,...

log
popu-
larity

log rank

Zipf .8

Zipf 1.2
LFU

cache size/population

hit
rate

0
1 0

1

Zipf .8
Zipf 1.2

LRU

Weibull?

Rules of thumb...

•  populations (approx)
–  web 1011 x 10 KB
–  UGC 108 x 10 MB
–  file sharing 105 x 10 GB
–  VoD 104 x 100 MB

•  very large cache needed for
 web, UGC, file sharing
–  popularity ~ Zipf .8
–  population ~ 1 PB
–  cache ~ 10-100 TB

•  small cache enough for VoD
–  popularity ~ Zipf 1.2 (?)
–  population ~ 1 TB
–  cache ~ <1 TB

cache size/population

hit
rate

0
1 0

1

Zipf .8
Zipf 1.2

LFU
LRU

Cache sharing

•  cache partitions for
 service differentiation
–  careful static partitions

 for optimal bandwidth
 savings...

–  ... but dynamic partitions
 are OK and ensure
 maximal cache utilization

–  cf. ICC 2011 paper by
 Carofiglio et al.

•  fully shared cache, web,
 file sharing, UGC, VoD
–  cache mainly used by VoD

 unless very large

LFU hit rate v cache size

Networks of caches

•  a cache hierarchy
–  all routers have cache (as proposed in CCN)?
–  or small caches at edge and large data centres in the core?

•  cache coordination
–  LRU everywhere brings too much duplication
–  LRU at lower level, MRU at higher level is better
–  need for optimized placements?

•  analytical models
–  evolution of popularity distributions
–  impact of correlation

edge caches

core caches

sources

Work in progress

•  multipath routing
–  simulations show impact of topology, popularity, cache policies
–  first results: limited impact of topology, simple randomized policies

 efficient, strongest impact from population size and popularity
 distribution

–  open source simulator
•  multicast using digital fountains (not CCN)

–  periodic interest packets, source coding, congestion control using
 packet loss rate indications

–  performance depends on popularity distribution
•  transport

–  design of receiver-based CCN transport protocols
–  Interest flow shaping to alleviate congestion

Publications

•  G. Carofiglio, M. Gallo, L. Muscariello, D.Perino Modeling data transfer in
 content-centric networking
–  Proc. of 23rd International Teletraffic Congress, ITC23 San Francisco, CA,

 USA, 2011.
•  G. Carofiglio, M. Gallo, L. Muscariello, Bandwidth and storage sharing

 performance in information-centric networking
–  SIGCOMM workshop on information-centric networking, Toronto, 2011.

•  D. Perino and M. Varvello, A reality check for content-centric networking,
–  SIGCOMM workshop on information-centric networking, Toronto, 2011.

•  G. Carofiglio, V. Gehlen, D. Perino, Experimental evaluation of storage
 management in Content-Centric Networking,
–  IEEE ICC 2011, Kyoto, Japan.

•  M. Diallo, S. Fdida, V. Sourlas, P. Flegkas, L. Tassiulas, Leveraging caching
 for Internet-scale content-based publish/subscribe networks,
–  IEEE ICC 2011, Kyoto, Japan.

Conclusions

•  flow-aware networking is a complete traffic control for CCN
•  "Interests buy Data" implies a rational direction of charging

–  some requirements: object name in packet headers, fair queuing in
 face buffers

–  some enhancements: Interest discard, explicit congestion
 notification

•  cache management is the key to efficient content distribution
–  small (TB) caches good for VoD but not for other content types
–  larger caches (PB) in core might mean CDN-like solutions (not CCN

 using data centres
•  ongoing developments in CONNECT

–  forwarding & cache management strategies, experimental
 evaluations, links with naming and routing, CCN use cases

