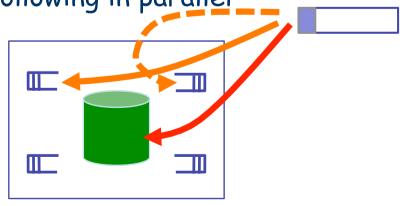
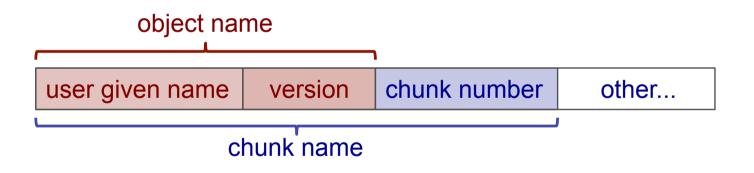


Bandwidth and memory sharing in CCN: results from CONNECT

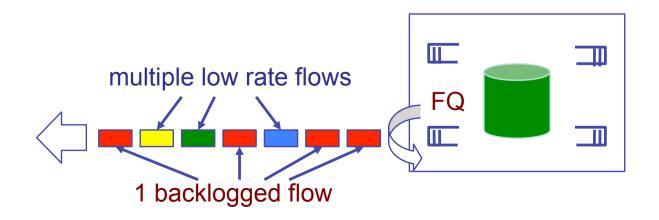
Jim Roberts, INRIA

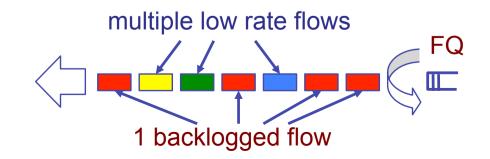

COMET-ENVISION Workshop Slough, 10-11 November 2011

CONNECT

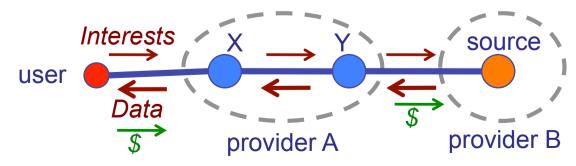

- a French national project (Jan 2011 Dec 2012)
- Alcatel, Orange, INRIA, Univ Paris VI, Telecom ParisTech
- objective: consider content-centric networking, starting from the PARC design, adding missing pieces within our area of competence (traffic control, cache management,...)
- 5 work packages
 - traffic control and resource sharing
 - naming, routing and forwarding
 - caching strategies and bandwidth/memory tradeoffs
 - use cases and security
 - evaluation, experimentation
- this talk relates work from 1st and 3rd work packages

CCN traffic control

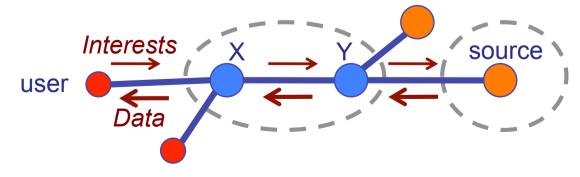

- traffic control by network mechanisms and forwarding strategies
 - to ensure low latency for real time applications
 - to control bandwidth sharing between elastic downloads
 - to enable a viable business model for the network provider
- a need to separate buffer and cache
 - a huge cache of $O(10^{12})$ bytes to significantly reduce traffic volume
 - a small buffer of O(10⁶) bytes on each face for responsive traffic management
- on arrival of a Data packet do the following in parallel
 - cache, if appropriate
 - place in buffer on relevant faces
 - discard, if necessary


- identify flows by object name...
 - included in chunk name and parse-able
- ... on-the-fly, locally, e.g., at a given face

- identify flows by object name...
 - included in chunk name and parse-able
- ... on-the-fly, locally, e.g., at a given face
- at each face apply per-flow fair queuing
 - to ensure low latency for real time applications
 - to control bandwidth sharing between elastic downloads

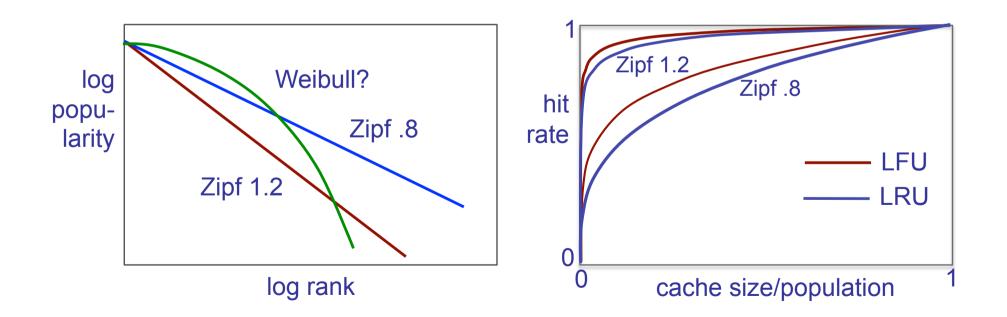

- identify flows by object name...
 - included in chunk name and parse-able
- ... on-the-fly, locally, e.g., at a given face
- at each face apply per-flow fair queuing
 - to ensure low latency for real time applications
 - to control bandwidth sharing between elastic downloads
- a provably scalable mechanism: O(100) active flows at load < 90%
 - under a realistic model of dynamic traffic
 - "active flows" have 1 or more packets in buffer
 - load = flow arrival rate × mean size / link rate

- identify flows by object name...
 - included in chunk name and parse-able
- ... on-the-fly, locally, e.g., at a given face
- at each face apply per-flow fair queuing
 - to ensure low latency for real time applications
 - to control bandwidth sharing between elastic downloads
- a provably scalable mechanism: O(100) active flows at load < 90%
 - under a realistic model of dynamic traffic
 - "active flows" have 1 or more packets in buffer
 - load = flow arrival rate × mean size / link rate
- traffic engineering and overload control required to ensure load < 90%

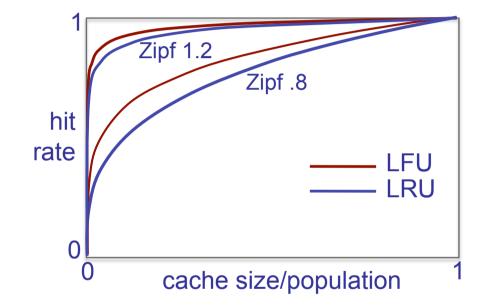

Paying for transport

- a proposed direction of charging: Interests "buy" Data
 - user pays provider A, A pays provider B,..., for *delivered* Data
 - not excluding flat rates, peering...
- brings return on investment and incentive to invest
 - in transmission capacity (to be able to sell Data)
 - in cache memory to avoid paying repeatedly for popular content
- no charge for Interests but an incentive to avoid buying Data that can't be delivered due to congestion...
- ... by discarding excess Interests
 - using FQ scheduler status to determine excess

Forwarding strategies


- network performance is broadly independent of user strategies in emitting Interests
 - greedy strategies are OK (e.g., using source coding)
 - AIMD avoids unnecessary end-system complexity
- multicast and multipath forwarding work OK with fair queuing
 - provided multicast streams are in cache
 - provided multipath intelligently avoids long paths
- enhance CCN with explicit congestion notification: discard payload if necessary but return the header
 - limits PIT size in routers and end-systems

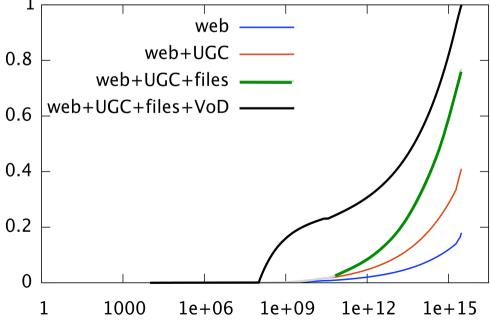
Cache performance: re-visiting the literature


- popularity distributions:
- replacement policies:
- hit rate estimates:

Zipf (~1/i^a), a<1 or a>1, other laws LFU, LRU, LRU with filters, random,... Flajolet, Jelenkovic, Gelenbe, Che,...

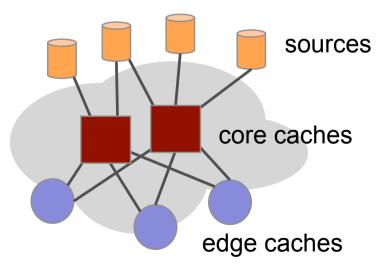
Rules of thumb...

- populations (approx)
 - web $10^{11} \times 10 \text{ KB}$
 - UGC $10^8 \times 10$ MB
 - file sharing $10^5 \times 10 \text{ GB}$
 - VoD $10^4 \times 100 \text{ MB}$
- very large cache needed for web, UGC, file sharing
 - popularity ~ Zipf .8
 - population ~ 1 PB
 - cache ~ 10-100 TB
- small cache enough for VoD
 - popularity ~ Zipf 1.2 (?)
 - population ~ 1 TB
 - cache ~ <1 TB



Cache sharing

- cache partitions for service differentiation
 - careful static partitions for optimal bandwidth savings...
 - ... but dynamic partitions 1
 are OK and ensure
 maximal cache utilization 0.8
 - cf. ICC 2011 paper by Carofiglio et al.


- fully shared cache, web, file sharing, UGC, VoD
 - cache mainly used by VoD unless very large

LFU hit rate v cache size

Networks of caches

- a cache hierarchy
 - all routers have cache (as proposed in CCN)?
 - or small caches at edge and large data centres in the core?
- cache coordination
 - LRU everywhere brings too much duplication
 - LRU at lower level, MRU at higher level is better
 - need for optimized placements?
- analytical models
 - evolution of popularity distributions
 - impact of correlation

Work in progress

- multipath routing
 - simulations show impact of topology, popularity, cache policies
 - first results: limited impact of topology, simple randomized policies efficient, strongest impact from population size and popularity distribution
 - open source simulator
- multicast using digital fountains (not CCN)
 - periodic interest packets, source coding, congestion control using packet loss rate indications
 - performance depends on popularity distribution
- transport
 - design of receiver-based CCN transport protocols
 - Interest flow shaping to alleviate congestion

Publications

- G. Carofiglio, M. Gallo, L. Muscariello, D.Perino Modeling data transfer in content-centric networking
 - Proc. of 23rd International Teletraffic Congress, ITC23 San Francisco, CA, USA, 2011.
- G. Carofiglio, M. Gallo, L. Muscariello, Bandwidth and storage sharing performance in information-centric networking
 - SIGCOMM workshop on information-centric networking, Toronto, 2011.
- D. Perino and M. Varvello, A reality check for content-centric networking,
 - SIGCOMM workshop on information-centric networking, Toronto, 2011.
- G. Carofiglio, V. Gehlen, D. Perino, Experimental evaluation of storage management in Content-Centric Networking,
 - IEEE ICC 2011, Kyoto, Japan.
- M. Diallo, S. Fdida, V. Sourlas, P. Flegkas, L. Tassiulas, Leveraging caching for Internet-scale content-based publish/subscribe networks,
 - IEEE ICC 2011, Kyoto, Japan.

Conclusions

- flow-aware networking is a complete traffic control for CCN
- "Interests buy Data" implies a rational direction of charging
 - some requirements: object name in packet headers, fair queuing in face buffers
 - some enhancements: Interest discard, explicit congestion notification
- cache management is the key to efficient content distribution
 - small (TB) caches good for VoD but not for other content types
 - larger caches (PB) in core might mean CDN-like solutions (not CCN using data centres
- ongoing developments in CONNECT
 - forwarding & cache management strategies, experimental evaluations, links with naming and routing, CCN use cases