Architecture of a Network-Aware P2P-TV Application: the NAPA-WINE Approach

Emilio Leonardi
Politecnico di Torino
Internet Video Streaming

- Enable video distribution from anywhere, to any number of people anywhere in the world
- Unlimited number of channels
 - Everyone can be a content producer/provider
CDN vs P2P

Content Delivery Networks
- resources (costs) demanded to servers scale linearly with the number of users
+ fully controllable by the content provider and Internet provider

P2P systems (Peer Assisted)
+ resources (costs) demanded to servers, potentially independent from the system scale
- requires high bandwidth access
- much more difficult to control
Open issues in peer assisted systems

- peer authentication (access control pricing)
- incentives to cooperation
- robustness against attacks (s.a pollution)
- localization of traffic

In a nutshell how to make peer assisted systems, secure, fully controllable, and network gently?
Definition and implementation of a network aware P2P-TV application that is able to minimize the impact on the transport network

- Design of a distributed monitoring tool to be integrated within the application.
- Design of algorithms for the control of cooperative P2P-TV systems
- Characterization of P2P-TV traffic
Tree based P2P-TV systems

- Different peers are organized in a tree structure routed at the source
- The content is distributed along the tree
Multi tree P2P-TV systems

- The source adopts a multi-description encoder
- Each description is distributed on a different tree
Unstructured Systems

- peers are arranged according to a generic highly connected network
- the stream is subdivided in portions called *chunks*
- each chunk is distributed along a possibly different spanning tree (SP)
- SP are selected using simple random fully distributed algorithms
Chunks are distributed through the network using a swarm like (epidemic) approach

- as soon as, a peer obtains a new chunk c, it will offer c to its neighbors
- Chunks are not propagated perfectly in order; however chunk timing is critical (due to the application requirements)
- Each chunk has a deadline after which it is not useful (this deadline is related to the play-out buffer)
Pros and Cons of Unstructured Architectures

+ fully resilient to churning
+ no need of centralized control
+ efficient to exploit the bandwidth
- larger delays in delivering information
- very difficult to control and predict the performance

NAPA-WINE application is unstructured
P2P-TV Simple View

Which TOPOLOGY to use?

Which LINKS to use?
P2P-TV: NAPA-WINE Approach
Overview of the architecture

Scheduler layer
- Chunk buffer
- Active peers’ InfoBase
- Trading Logic
- Peer Selection

Peer Selection
- Ext-Rep
- Net-Rep
- Peer-Rep
- REP controller

Overlay Layer
- Topology controller
- Neighbour set
- Monitoring Controller
- Monitoring layer
- Pasv. meas
- Act. meas

User Layer
- Content Ingestion
- Player
- Control Interface

Messaging Layer + NAT/FW traversal
- IPv4 / IPv6 + UDP / TCP / SCTP / ...

User Layer
- Content Ingestion
- Player
- Control Interface

Overlay Layer
- Topology controller
- Neighbour set
- Monitoring Controller
- Monitoring layer
- Pasv. meas
- Act. meas

Scheduler layer
- Chunk buffer
- Active peers’ InfoBase
- Trading Logic
- Peer Selection

User Layer
- Content Ingestion
- Player
- Control Interface

Overlay Layer
- Topology controller
- Neighbour set
- Monitoring Controller
- Monitoring layer
- Pasv. meas
- Act. meas

Scheduler layer
- Chunk buffer
- Active peers’ InfoBase
- Trading Logic
- Peer Selection

User Layer
- Content Ingestion
- Player
- Control Interface

Overlay Layer
- Topology controller
- Neighbour set
- Monitoring Controller
- Monitoring layer
- Pasv. meas
- Act. meas

Scheduler layer
- Chunk buffer
- Active peers’ InfoBase
- Trading Logic
- Peer Selection

User Layer
- Content Ingestion
- Player
- Control Interface

Overlay Layer
- Topology controller
- Neighbour set
- Monitoring Controller
- Monitoring layer
- Pasv. meas
- Act. meas

Scheduler layer
- Chunk buffer
- Active peers’ InfoBase
- Trading Logic
- Peer Selection

User Layer
- Content Ingestion
- Player
- Control Interface

Overlay Layer
- Topology controller
- Neighbour set
- Monitoring Controller
- Monitoring layer
- Pasv. meas
- Act. meas

Scheduler layer
- Chunk buffer
- Active peers’ InfoBase
- Trading Logic
- Peer Selection

User Layer
- Content Ingestion
- Player
- Control Interface

Overlay Layer
- Topology controller
- Neighbour set
- Monitoring Controller
- Monitoring layer
- Pasv. meas
- Act. meas

Scheduler layer
- Chunk buffer
- Active peers’ InfoBase
- Trading Logic
- Peer Selection

User Layer
- Content Ingestion
- Player
- Control Interface

Overlay Layer
- Topology controller
- Neighbour set
- Monitoring Controller
- Monitoring layer
- Pasv. meas
- Act. meas
Network Monitoring Module

- A number of measurement functions are available
 - RTT, Hop count, capacity, loss rate,
 - Capacity and available bandwidth
 - pluggable measurement functions can be added
 - extensible framework
Monitoring Platform
Simple example of Capacity and available bandwidth measurement

![Graph showing Capacity and Available Bandwidth](image)

- Capacity
- Available Bandwidth

4 Mb/s UDP cross traffic
7 Mb/s UDP cross traffic
1,2,3,4,5 TCP cross traffic

Round Trip Time, Loss probability

[NAPA WINE]
On-line QoE estimation

- A QoE estimator has been developed:
 - It estimates online the quality of the audio/video on the base of loss patterns and potentially other parameters (trained database)
 - based on random neural network (Gelenbe, Rubino)
Conclusive experience

- useful parameters can easily be measured
 - RTT, hop counts
 - useful for topology management and peer scheduling

- some parameters are difficult to obtain
 - available bandwidth technique are error prone
 - the capacity of the bottleneck may be intrusive

- some parameters must be carefully measured
 - Input parameters for the Neural Network: losses, loss burst size, delays
 - misguided measurement in the RNN input will mistake the QoE estimation process
 - measurement accuracy is crucial for good QoE estimation
Repository

- A repository has been developed and released:
 - It stores information published by peers
 - SQL information base
 - HTTP communication interface
 - Currently implement the peer repository
 - E-REP (ALTO server) is alto under development
Application Layer Traffic Optimization (ALTO)
Integration of ALTO Server + Client into Napa-Wine Architecture

- ALTO Client is part of the External Repository (E-Rep)
- E-Rep can contact ALTO server to gain network-layer information the peers cannot measure themselves
Scheduling and overlay
Scheduler layer

Chunk buffer

Trading Logic

Peer Selection

Active peers’ InfoBase

Overlay Layer

Topology controller

Neighbour set

Pas. meas.

User Layer

Content Ingestion

Player

Control Interface

User Layer

Content Ingestion

Player

Control Interface

IPv4 / IPv6 + UDP / TCP / SCTP / ...

Messaging Layer + NAT/FW traversal

User Layer

Content Ingestion

Player

Control Interface

IPv4 / IPv6 + UDP / TCP / SCTP / ...

Scheduler layer

Chunk buffer

Trading Logic

Peer Selection

Active peers’ InfoBase

Overlay Layer

Topology controller

Neighbour set

Pas. meas.

User Layer

Content Ingestion

Player

Control Interface

IPv4 / IPv6 + UDP / TCP / SCTP / ...

Messaging Layer + NAT/FW traversal
Signalling Thread

- A peer publishes the set of chunks it possesses through an **offer** message.
- Peers specify the chunk they are interested in with a **select** message.
- Once the select message is received, chosen chunk is transmitted (over UDP).
- An **ack** is sent back once chunk is received
System Dynamics

- Offer
- Select
- Negative Select
- Chunk Transmission
- Acknowledgement

RTT_{AB}

N_A

Peer A

D_{AB}

time
Congestion Control is needed

- **The number of parallel threads** N_A must match peers’ upload capacity.
 - If N_A is too small,
 - Peers’ upload bandwidth is not exploited at best.
 - The transmission queue empties quickly.
 - Long periods of inactivity.
 - If N_A is too large,
 - Transmission queue becomes too long.
 - Large delivery delays and, possibly, losses.

- Exploit **upload bandwidth** and maintain **short queues** to limit the delivery delay!

- Optimal setup depends on the network scenario which is **unpredictable**
Hose Rate Control

- The algorithm runs everytime an **ACK** is received:
 1. \(D = t_{rx,ack} - t_{rx,sel} - RTT_{AB} \)
 2. \(W_A(n) = W_A(n-1) - \alpha(D-D_0) \)
 3. \(\Delta N_A = \text{floor}(W_A(n)) - \text{floor}(W_A(n-1)) \)
Queue delay \((D) \), number of active signalling threads \((N_A) \) and throughput evolution during time adopting HRC \((\rho = 0.9, \ D_0=150\text{ms})\).
Logical topology

- The logical topology is a directed graph, every node chooses its K in-neighbors (parents).
- It can be built either exploiting repository information gossiping mechanisms (Newscast).
- Every T sec. peer p updates the list of in-neighbors $NI(p)$. At every update, $NI(p)$ is the result of two separate filtering functions:
 - one that selects the peers to drop,
 - another one selecting parents to add.
For these filtering functions we consider:

- peer upload bandwidth,
- path RTT or
- path packet loss rate,

and some application layer metrics

- the peer offer rate
- number of received chunks from a parent.

A sufficient degree of randomness must be guaranteed!
Performance

![Bar chart showing Performance over different conditions]

- **Add RND**
- **Add BW**
- **Add OFF**
- **Add RTT**

Peers over 1% Losses %

- **Drop RND**
- **Drop RXC**
- **Drop RTT**

Peers over 3% Losses %

- **Add RND**
- **Add BW**
- **Add OFF**
- **Add RTT**

NAPA WINE

45
Examples of topologies

RTT-RTT

RTT-Random

Random-Random
Scientific Conclusions

- In most of the scenarios it is possible to localize the traffic without endangering the perceived QoE.
 - Being too extreme in localizing traffic may cause degradations of the QoE.
 - Nevertheless there are margins within which traffic can be localized without degrading QoE.
 - In several cases a smart localization strategy can even slightly improve the application performance.
Localization is more effective if the application can exploit cost metrics exported by the operators through the ALTO interface that has been standardized within the IETF, and of which NAPA-WINE is one of the principal contributors.
Continuous monitoring of the network status can greatly improve the ability of detecting anomalies and the ability to promptly react to them.

Network monitoring can easily be achieved by embedding a distributed measurement platform within the application (as done in Winestreamer).
To achieve good performance it is necessary that the distributed algorithms for the design and the maintenance of the overlay topology guarantee a sufficient degree of randomness.

Local selections of neighboring peers according to deterministic rules can result in an overall overlay topology with bad graph properties.
Information about the upload bandwidth of peers can be effectively exploited to design algorithms for the design and maintenance of the overlay topology and chunk scheduling that optimize the system performance.
Scientific conclusions (Cnt)

- UDP is preferable to TCP as transport protocol, since it significantly reduces the chunk transfer times.
- Peers must be supplied with a simple application level rate control mechanism to avoid bandwidth wastage and congestions.
Winestreamer/Peerstreamer

- Available at http://peerstreamer.org
THE END

Thank you!
Questions?
Comments?