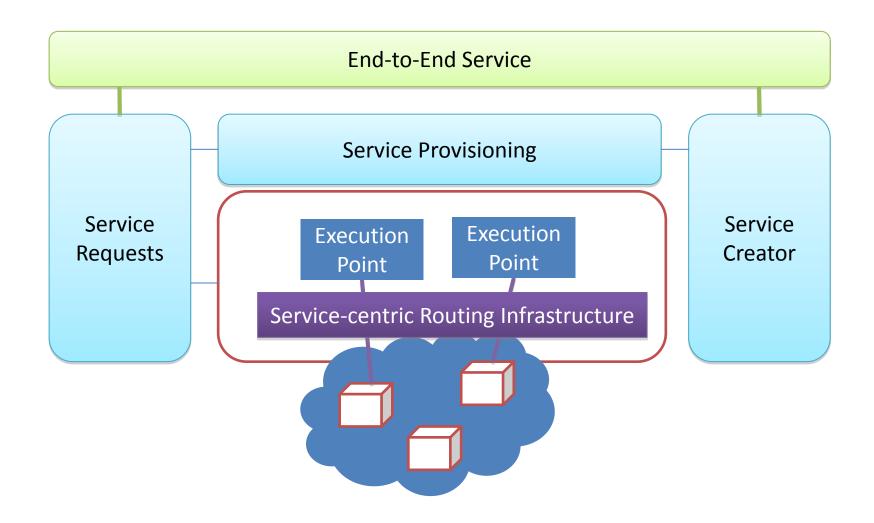


Service Oriented Networking

David Griffin
University College London

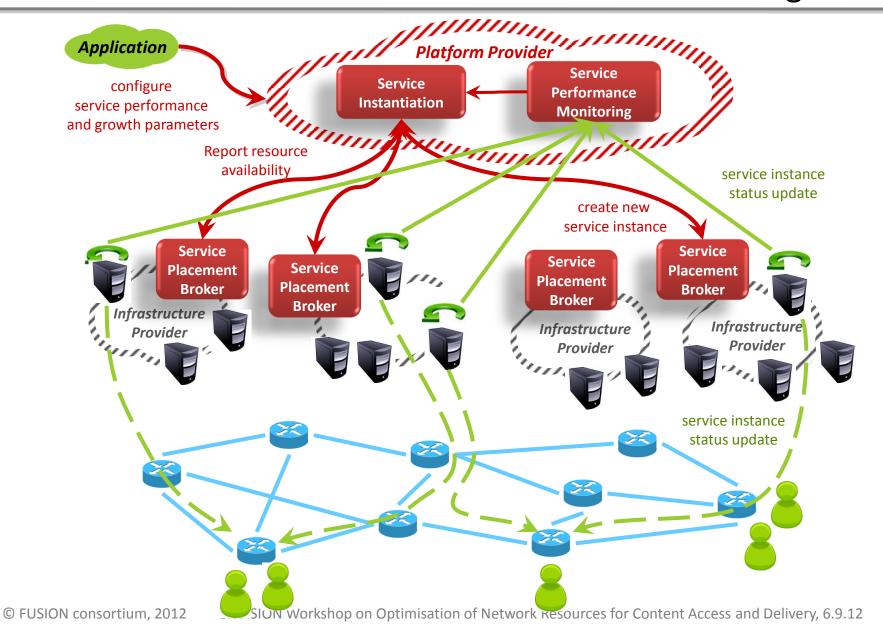
ENVISION Workshop on Optimisation of Network Resources for Content Access and Delivery

6 September 2012

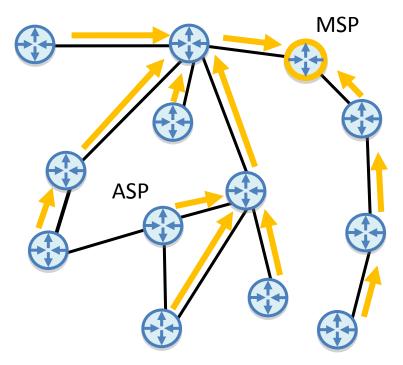


Service Oriented Networking – problem space

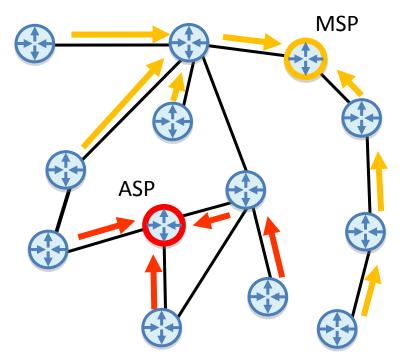
- Media applications are not stand-alone
- Cloud storage and applications are limited and unsuitable for dynamic, real-time, high-bandwidth applications
 - Granularity
 - Localisation
 - Configurability
- CDNs are fine for distributing static content efficiently
- ICN takes CDNs a stage further with fine grained caching
- Neither are suitable for deploying and accessing service processing capabilities
- FUSION is studying Service Oriented Networking
 - Optimise provisioning of service components
 - Native network protocols for service access and routing
 - Interworking between service and network layers.



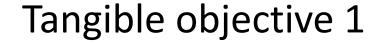
Service Oriented Networking high-level view



FUSION service deployment and dynamic configuration



Service-aware networking example



Before Hotspot Detection

After Hotspot Detection

MSP/ASP: Main/Alternative Service Process

- Define a combined service and network architecture that exploits the synergies between both for delivering a new class of decentralised, high-bandwidth-and-processing, real-time applications.
 - Distributed processing elements outside of the tightly controlled environments typical of current data centres
 - Dynamic service instantiation according to user demands including flash crowds, service urgency and interactivity
 - Scalable service naming scheme for both the network and service management layers
 - Migration path from current cloud architectures.
- Verifiable metrics:
 - The scalability of the end-to-end solution with respect to dynamically growing or shrinking service demand patterns and number of services

- Provide new network protocols operating on both the network and service layers for demanding applications:
 - A routing protocol that selects the best available instance for a user session
 - Compact service-routing protocols
 - Efficient registration and aggregation of service instance status updates distributed over the network
- Verifiable metrics:
 - Accuracy of selecting optimal service instances
 - Routing overhead and stretch
 - Load dispersion across multiple instances of the same component
 - Amount of service data that needs to be maintained according to the frequency and quantity of routing updates.

Tangible objective 3

- Develop techniques and algorithms for a service platform to deploy and execute complex and personalised services:
 - Service description and orchestration language that is able to define an application in terms of service components and interactions
 - Intelligent service placement algorithms for optimal service instantiation mapped to available network and computation resources
 - Lightweight, container-based resource isolation techniques for heterogeneous hardware systems.
- Verifiable metrics:
 - Number of parameters and functions to define personalised services
 - Network/service performance metrics delivered by service instances at the selected locations
 - Overhead (memory, CPU load, etc.) of the selected lightweight virtualisation techniques
 - Time to establish and tear-down service instances.

- Service-aware networking, combining deployment, execution, dynamic instantiation, routing, load-balancing will result in:
 - Highly demanding networked applications (gaming, personalised video, public safety...) to be deployed in a scalable and cost-efficient manner
 - Improved performance, reduced cost, improving flexibility and efficiency
 - Increased access for users, application and service providers
 - Increased involvement of ISPs in application provisioning, recouping revenue lost to OTT services

- University College London, UK
- Alcatel-Lucent Bell NV, Belgium
- Telekomunikacja Polska S.A., Poland
- Spinor GmbH, Germany
- Interdisciplinary Institute for Broadband Technology, Belgium

